The fractional Galois ideal for arbitrary order of vanishing
نویسنده
چکیده
We propose a candidate, which we call the fractional Galois ideal after Snaith’s fractional ideal, for replacing the classical Stickelberger ideal associated to an abelian extension of number fields. The Stickelberger ideal can be seen as gathering information about those L-functions of the extension which are non-zero at the special point s = 0, and was conjectured by Brumer to give annihilators of class-groups viewed as Galois modules. An earlier version of the fractional Galois ideal extended the Stickelberger ideal to include L-functions with a simple zero at s = 0, and was shown by the present author to provide class-group annihilators not existing in the Stickelberger ideal. The version presented in this article deals with L-functions of arbitrary order of vanishing at s = 0, and we give evidence using results of Popescu and Rubin that it is closely related to the Fitting ideal of the class-group, a canonical ideal of annihilators. Finally, we prove an equality involving Stark elements and class-groups originally due to Büyükboduk, but under a slightly different assumption, the advantage being that we need none of the Kolyvagin system machinery used in the original proof. 2000 Mathematics Subject Classification: Primary 11R42; Secondary 11R29.
منابع مشابه
The fractional Galois ideal , Stark elements and class - groups Paul Buckingham
We refine the definition of the fractional Galois ideal introduced in [Paul Buckingham. The canonical fractional Galois ideal at s = 0. J. Number Theory, 128(6):1749–1768, 2008] which was based on Snaith’s fractional ideal, allowing us to give a general relationship of this object with the Stark elements appearing in Rubin’s integral sharpening of Stark’s Conjecture. We motivate this by using a...
متن کاملThe fractional Galois ideal, Stark elements and class-groups
We refine the definition of the fractional Galois ideal introduced in [Paul Buckingham. The canonical fractional Galois ideal at s = 0. J. Number Theory, 128(6):1749–1768, 2008] which was based on Snaith’s fractional ideal, allowing us to give a general relationship of this object with the Stark elements appearing in Rubin’s integral sharpening of Stark’s Conjecture. We motivate this by using t...
متن کاملNew existence results for a coupled system of nonlinear differential equations of arbitrary order
This paper studies the existence of solutions for a coupled system of nonlinear fractional differential equations. New existence and uniqueness results are established using Banach fixed point theorem. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. Some illustrative examples are also presented.
متن کاملThe Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملSome new results using Hadamard fractional integral
Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...
متن کامل